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Abstract 
A novel method for 3D head tracking in the presence 

of large head rotations and facial expression changes is 
described. Tracking is formulated in terms of color im- 
age registration in the texture map of a 3D surface model. 
Model appearance is recursively updated via image mo- 
saicking in the texture map as the head orientation varies. 
The resulting dynamic texture map provides a stabilized 
view of the face that can be used as input to many exist- 
ing 2D techniques for face recognition, facial expressions 
analysis, lip reading, and eye tracking. Parameters are es- 
timated via a robust minimization procedure; this provides 
robustness to occlusions, wrinkles, shadows, and specular 
highlights. The system was tested on a variety of sequences 
taken with low quality, üncalibratedvideo cameras. Exper- 
imental results are reported. 

1   Introduction 
A wide range of machine vision methods for tracking 

and recognizing faces, facial expressions, lip motion, and 
eye movements have appeared in the literature. Potential 
applications are as diverse and numerous as the algorithms 
proposed: human/machine interfaces, video compression, 
video database search, surveillance, etc. One unifying as- 
pect of these applications is that they require robustness 
to significant head motion, change in orientation, or scale. 
Unrestricted head motion is critical if these systems are to 
be non-intrusive and general. 

1.1   Related Work 
Several techniques have been proposed for free head 

motion and face tracking. Some of these techniques focus 
on 2D tracking (e.g., [5, 8, 10, 14, 19, 20]), while others 
focus on 3D tracking or stabilization. 

Some methods for recovering 3D head parameters are 
based on tracking of salient points, features, or 2D image 
patches. The outputs of these 2D trackers can be processed 
by an extended Kaiman filter to recover 3D structure, focal 
length and facial pose [1]. In [12], a statistically-based 3D 
head model (eigen-head) is used to further constrain the 
estimated 3D structure. Another point-based technique for 
3D tracking is based on the tracking of five salient points 
on the face to estimate the head orientation with respect to 
the camera plane[l 1]. 

Others use optic flow coupled to a 3D surface model. In 
[2], rigid body motion parameters of an ellipsoid model are 
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estimated from a flow field using a standard minimization 
algorithm. In other approaches [6] flow is used to constrain 
the motion of an anatomically-motivated face model and 
integrated with edge forces to improve the results. In [13], 
a render-feedback loop was used to guide tracking for an 
image coding application. 

Still others employ more complex physically-based 
models for the face that include both skin and muscle dy- 
namics for facial motion. In [18], deformable contour 
models were used to track the non-rigid facial motion while 
estimating muscle actuator controls. In [7], a control theo- 
retic approach was employed, based on normalized corre- 
lation between the incoming data and templates. 

Finally, global head motion can be tracked using a plane 
under perspective projection [4]. Recovered global planar 
motion is used to stabilize incoming images. Facial ex- 
pression recognition is accomplished by tracking deform- 
ing image patches in the stabilized images. 

Most of the above mentioned techniques are not able to 
track the face in presence of large rotations and some re- 
quire accurate initial fit of the model to the data. While a 
planar approximation addresses these problems somewhat, 
flattening the face introduces distortion in the stabilized 
image and cannot model self occlusion effects. 

1.2   New Approach 

In this paper, we propose an algorithm for 3D head 
tracking that extends the range of head motion allowed in 
the planar model. Our system uses a texture mapped 3D 
surface model for the head. During tracking, each input 
video image is projected into the surface texture map of 
the model. Model parameters are updated via robust image 
registration in texture map space. The output of the sys- 
tem is the 3D head parameters and a 2D dynamic texture 
map image. The dynamic texture image provides a stabi- 
lized view of the face that can be used for facial expression 
recognition, lip reading, and other applications requiring 
that the position of the head is frontal and almost static. 

The system has the advantages of a planar face tracker 
(reasonable simplicity and robustness to initial positioning) 
but not the disadvantages (difficulty in tracking large rota- 
tions). The main differences are that a.) self occlusion 
can be managed and b.) better tracking of the face can be 
achieved through the use of a texture map mosaic acquired 
via view integration as the head moves. 
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2   Basic Idea 
Our technique is based directly on the incoming image 

stream; no optical flow estimation is required. The ba- 
sic idea consists of using a texture mapped surface model 
to approximate the head, accounting in this way for self- 
occlusions and to approximate head shape. We then use 
image registration to fit the model with the incoming data. 

To explain how our technique works, we will assume 
that the head is exactly a cylinder with a 360°-wide image, 
or more precisely a movie due to facial expression changes, 
texture mapped on its surface. Obviously only a 180°-wide 
slice of this texture is visible in each frame. If we know 
the initial position of the cylinder we can use the incoming 
image to compute the texture map for the currently visible 
portion, as shown in Fig. 1. The transformation to project 
part of the incoming frame in the corresponding cylindrical 
surface depends in fact only on the 3D parameters of the 
cylinder and on the camera model. 

project video 
image onto 
surface 

compute 
texture map 
image 

Figure 1: Mapping from image plane to texture map. 

As a new frame is acquired it is possible to find a set 
of cylinder parameters such that the texture extracted from 
the incoming frame best matches the reference texture. 
In other words, the 3D head parameters are recovered by 
performing image registration in the model's texture map. 
Due to the rotations of the head the visible part of the tex- 
ture can be shifted respect to the reference texture, in the 
registration procedure we should then consider only the 
intersection of the two textures. A resulting tracking se- 
quence is shown in Fig. 2. 

The registration parameters determine the projection of 
input video onto the surface of the object. Taken as a se- 
quence, the project video images comprise a dynamic tex- 
ture map, as shown in Fig. 3. This map provides a sta- 
bilized view of the face that is independent of the current 
orientation, position and scale of the surface model. 

Figure 2: Example input video frames and head tracking. 

Figure 3: Recovered dynamic texture map images. Note that the 
video image is mapped into only that portion of the texture map 
that corresponds with the visible portion of the model. The rest 
of the texture map is set to zero (black). 

At this point the tracking capabilities of this system are 
only slightly better than that of a planar approach, because 
a cylinder is a better approximation of a face respect to a 
plane. The key to allowing for large rotation tracking con- 
sists of building a mosaicked reference texture over a num- 
ber of frames, as the head moves. In this way, assuming 
that there are no huge interframe rotations along the verti- 
cal axis, we always have enough information to keep the 
registration procedure working. The resulting mosaic can 
also be used as input to face recognition. 

In practice, heads are not cylindrical objects,' so we 
should account for this modeling error. Moreover, changes 
in lighting (shadows and highlights) can have a relevant ef- 
fect and must be corrected in some way. In the rest of the 
paper, a detailed description of the formulation and imple- 
mentation will be given. Experimental evaluation of the 
system will also be described. 

3   Formulation 
The general formulation for a 3D texture mapped sur- 

face model will now be developed. Figure 1 shows the var- 
ious coordinate systems employed in this paper: (x, y, z) 
is the 3D object-centered coordinate system, (u,v) is the 



image plane coordinate system, (s, t) is the surface's para- 
metric coordinate system. The latter coordinate system 
(s,t) will be also referred to as the texture plane as this 
is the texture map of the model. The (u, v) image coordi- 
nate system is defined over the range [—1,1] x [-1,1] and 
the texture plane (s, t) is defined over the unit square. 

The mapping between (s, t) and (u, v) can be expressed 
as follows. First, assume a parametric surface equation: 

(x,y,z,l) -x(s,t), (1) 

where 3D surface points are in homogeneous coordinates. 
For greater generality, a displacement function can be 

added to the parametric surface equation: 

x(s,i) = x(s,t) +-a(s,t)d(s,t), (2) 

allowing displacement along the unit surface normal n, as 
modulated by a scalar displacement function d(s,t). For 
an even more general model, a vector displacement field 
can be applied to the surface. Displacement functions will 
be included in a future version of our system. 

The resulting surface can then be translated, rotated, and 
scaled via the standard 4x4 homogeneous transform: 

JVL — TlvajXvyXVgö, (3) 

where T is the translation matrix, S is the scaling matrix, 
and Ra;, Ry, Rz are the Euler angle rotation matrices. 

Given a location (s, t) in the parameter space of the 
model, a point's location in the image plane is obtained 
via a projective transform: 

[ u'    v'    w' ]T = PMx(s,t), (4) 

where (u, v) = (u'/w',v'/w'), and P is a camera projec- 
tion matrix: 

10 0 0 
0 10 0 
0   0    I    1 

(5) 

The projection matrix depends on the focal length /, which 
in our system is assumed to be known. 
3.1   Image Warps 

Tracking is achieved via image registration in the tex- 
ture map plane (s,t). However, the input video sequence 
is given in the image plane (u,v). Image warping func- 
tions are therefore needed to define the forward and inverse 
mappings between the two coordinate spaces. 

Using Eqs. 4 and 5, a forward warping function is de- 
fined that takes the texture map I(s, t) into the video image 
I'(u,v): 

I' = T(I,p), (6) 

where p is a vector containing the parameters for the model 
transformation matrix M, and the focal length /. 

Forward warpings can be achieved by applying the tex- 
ture image to the surface and then generating a raster 
graphics rendering of a texture mapped model. This ap- 
proach has the added advantage of visibility testing; only 
the forward-facing portion of the model will be rendered. 

In practice, the surface is approximated by a 3D triangle 
mesh. The warped image is then computed via Z-buffered 
rendering of the triangular mesh with bilinear resampling 
of the texture map. By defining image warping in this way, 
it is possible to harness hardware accelerated triangle tex- 
ture mapping capabilities becoming prevalent in mid-end 
workstations, PC s, and computer game consoles. 

An inverse function is also needed to warp images from 
the input video into the texture plane: 

^T-^I'.p). (7) 

If the underlying 3D surface model is convex, then this 
inverse warping can be obtained via raster graphics meth- 
ods. For each visible triangle of the cylinder we compute 
the corresponding coordinates of the vertices in the image 
plane using transform Eq. 5. Once the image plane coordi- 
nates of the vertices of a triangle are known, we can sim- 
ply map this portion of the video frame to the texture map 
(s,t) using the graphics pipeline's bilinear interpolation. 
Repeating this step for each visible triangle, the resulting 
warped image can be obtained. Note that the video image 
is mapped into only that portion of the (s, t) plane that cor- 
responds with the visible portion of the model. The rest of 
the image is set to zero. 

3.2   Confidence Maps 

As we warp video into the texture plane, not all pix- 
els have equal confidence. This is due to nonuniform den- 
sity of pixels as they are mapped between (u, v) and (s, t) 
space. As the input image is inverse projected, all visible 
triangles have the same size in the (s, t) plane. However, 
in the (u, v) image plane, the projections of the triangles 
have different sizes due to the different orientations of the 
triangles, and due to perspective projection. An approxi- 
mate measure of the confidence can be derived in terms of 
the ratio of a triangle's area in video image (u, v) over the 
triangle's area in the texture map (s, t). 

In practice, the confidence map is generated using a 
standard triangular area fill algorithm. The map is first ini- 
tialized to zero. Then each visible triangle is rendered into 
the map with a fill value corresponding to the confidence 
level. This approach allows the use of standard graphics 
hardware to accomplish the task. 

The confidence map can be used to gain a more prin- 
cipled formulation of facial analysis algorithms applied in 
the stabilized texture map image. In essence, the confi- 
dence map quantifies the reliability of different portions of 
the face image. The nonuniformity of samples can also 
bias the analysis, unless a robust weighted error residual 



scheme is employed. As will be seen in the next sec- 
tion, the resulting confidence map also enables the use of 
weighted error residuals in the tracking procedure. 

4   Registration and Tracking 
The goal of our system is nonrigid shape tracking. To 

achieve this, the system recovers the model parameters p 
that warp the video image I'(u,v) into alignment with a 
given reference texture Io (s,i). If we assume that image 
warps at different times are independent of each other, then 
M-estimation of image motion can be solved via registra- 
tion of sequential image pairs. 

We formulate the solution to this two image registration 
problem as minimizing the error over all the pixels within 
the region of interest: 

1   " 

n ■f—■ 
i=l 

e*   =    \\Io(si,ti)-I(si,ti) 

(8) 

(9) 

where a is a scale parameter that is determined based on 
expected image noise, and p is is the Lorentzian error norm 
p(ei,a) = log(l + e?/(2cr2)). Using the Lorentzian is 
equivalent to the incorporation of an analog outlier process 
in our objective function [3]. The provides in better robust- 
ness to specular highlights and occlusions. For efficiency, 
the log function can be implemented via table look-up. 

As previously noted, the reference and the transformed 
video images have an associated confidence map. It makes 
sense then to minimize a weighted cost function: 

1   " 
(10) 

i=l 

where k = J2iw(si,ti,p)wo(si,ti) is a normalization 
term, w(si,ti,p) and Wo(si,ti) are the confidence maps 
associated with the transformed video and reference tex- 
tures, respectively. 

To solve the registration problem, we minimize Eq. 10. 
Three nonlinear minimization approaches have been tested 
in our system: Powell line minimization [15], Marquardt- 
Levenberg [15, 17], and the difference decomposition [9]. 
Powell and Marquardt-Levenberg procedures were taken 
directly from [15], and will not be repeated here. The dif- 
ference decomposition approach had to be adapted, and 
will now be described. 
4.1   Difference Decomposition 

In the difference decomposition approach, we consider 
an rgb image in the (s, t) plane as a long vector, defining a 
difference basis set in the following way: 

bfc = I0-T 1(T(I0,nfc),po), (11) 

where po are the initial parameters for the model, and n^ 
is the parameter displacement vector for the kth basis im- 
age. In other words, difference basis images are obtained 

by slightly changing one of the transformation parameters, 
leaving the other parameters unaltered, to obtain a differ- 
ence template for that parameter. Each resultant difference 
image becomes a column in a difference decomposition ba- 
sis matrix B as described in [16]. 

In practice, four basis vectors per model parameter are 
sufficient. For the kth parameter, these four basis im- 
ages correspond with the difference patterns that result by 
changing that parameter by ±Sk and ±2<Sfc. Values of the 
8k are determined such that all the difference images have 
the same energy. Given b0, a simple bisection technique 
can be used to solve for 5k with respect to the equation: 

l|bk||-||bo|| = 0. (12) 

Once the difference decomposition basis has been com- 
puted, tracking can start. Assume p is the parameter vector 
at the previous time step, and I'(u, v) is the incoming im- 
age. We then compute the difference image D between the 
transformed video image and the reference texture map: 

D = I0-T-1(I,,p (13) 

The difference image can now be approximated in terms 
of a weighted combination of the difference decomposi- 
tion's basis vectors: 

WD « WBq, (14) 

where q is a vector of basis coefficients, and W is di- 
agonal confidence weighting matrix. Each diagonal ele- 
ment in W corresponds with the product of confidence at 
each pixel in the transformed video and reference texture: 
w{Si,ti,p)w0{Si,ti). 

The maximum likelihood estimate of q can be com- 
puted via weighted least squares: 

q = (BTWTWB)-1BTWTWD (15) 

The change in the model parameters is then obtained via 
matrix multiplication: 

Ap = Nq, (16) 

where N has columns formed by the parameter displace- 
ment vectors n* used in generating the difference basis. 

This procedure can be repeated iteratrvely for each 
frame, until the percentage error passes beneath a thresh- 
old, or the maximum number of iterations is reached. Ex- 
perimentally we found that two or three iterations are gen- 
erally sufficient to reach a much better point in the param- 
eter space, improving tracking precision and stability. 

For added stability, the difference decomposition ba- 
sis is updated periodically during tracking. This update is 
needed due to possible facial expression changes and due 
to new parts of head rotating into view. In our implemen- 
tation, this update is done every ten frames. 



5 Texture Map Mosaics 
As described above, at each frame we estimate: 1.) the 

3D head parameters, 2.) the input video image stabilized 
in the texture plane, and 3.) the confidence map. We would 
like to integrate this information over a collection of frames 
to obtain a mosaicked texture map and confidence map. 

Mosaicking is accomplished via a recursive procedure. 
For each new frame, we integrate the incoming texture with 
the mosaic by replacing pixels for which the incoming im- 
age has higher confidence. The same procedure is used to 
update the confidence map. Computing the mosaicked tex- 
ture using a weighted combination of the new data and old 
data with a time decay factor is under investigation. 

Registration with the mosaic can yield better tracking, 
since it provides a wider, integrated texture of the head. 
The advantage of using the mosaicked texture is that in 
general the intersection between the mosaic texture map 
and the projected video stream is in general 180°-wide, so 
we can use all of our incoming information. The resulting 
mosaic could be useful in 2D face recognition applications. 

6 Nonrigid Tracking in the Texture Map 
Given the stabilized view provided in the dynamic tex- 

ture map, we can track nonrigid deformation of the face. 
Our approach takes its inspiration from [4]: nonrigid fa- 
cial motions are modeled using local parametric models of 
image motion in the texture map. Our approach confines 
nonrigid motion to lie on a curved surface, rather than in 
a flat plane. This enables view independent modeling of 
nonrigid motion of the face. 

A parametric warping function controls local nonrigid 
deformation of the texture map: 

1 = W(I, a) (17) 

where a is a vector containing warping parameters, and 
I is the resulting warped image. For purposes of track- 
ing facial features, the warping functions can be quadratic 
polynomials [4], or nonrigid modes [16]. 

The forward warping function of Eq. 6 is now extended 
to include the composite of global warps due to rigid head 
motion and localized nonrigid warps due to facial motion: 

I' = T(W(I,a),p) (18) 

This composite warp (and its inverse) are implemented us- 
ing computer graphics techniques, as described in Sec. 3.1. 

In our implementation, facial deformations are modeled 
with image templates, using the active blobs formulation 
[16]. Each blob consists of a 2D triangular mesh with a 
color texture map applied, and deformation is parameter- 
ized in terms of each blob's low-order, nonrigid modes. 
During tracking, the rigid 3D model parameters are com- 
puted first, followed by estimation of the 2D blob deforma- 
tion parameters using robust error minimization procedure 
in Sec. 4. Due to space limitations, readers are directed to 
[16] for details about the blob formulation. 

7   Experimental Results 
The system was implemented using the cylindrical 

model of Eq. 4. Experiments were conducted on an SGI 
02 R5K workstation, using both the Powell and differ- 
ence decomposition minimization techniques. In the ex- 
periments, the initial rigid parameters for the head are as- 
sumed known. The initial texture I0 is acquired by project- 
ing the first video frame onto the cylinder. 

Fig. 4 shows tracking of a person enthusiastically telling 
a story using American Sign Language. The sequence in- 
cludes very rapid head motion and frequent occlusions of 
the face with the hand(s). Due to large interframe motion, 
we were unable to track reliably using the difference de- 
composition. However, despite the difficulty of the task, by 
using Powell's method stable tracking was achieved over 
the whole sequence of 93 frames, track is shown Fig. 4. 

The next example demonstrates using the system for 
head gesture analysis. We considered two simple head 
gestures: up-down (nodding yes), back-forth (nodding no). 
Fig. 5 shows every tenth frame taken from a typical video 
sequence of a back-forth gesture. Plots of estimated head 
translation and rotation are shown in the lower part of the 
figure. Note distinct peaks and valleys in the estimated 
parameter for rotation around the cylidrical axis; these cor- 
respond with the extrema of head motion. 

Fig. 6 depicts a typical video sequence of an up-down 
gesture. Again, there are distinct peaks/valleys in graphs of 
estimated translation and rotation parameters. Note that in 
this case there appears to be a coupling between the rota- 
tion around the z-axis and translation along the ^-direction 
(with opposite phase). This coupling is due to the different 
center of rotation for the head vs. the center of rotation for 
the cylindrical model. Even with this coupling, the esti- 
mated parameters are sufficiently distinctive to be useful in 
discrimination of the two nodding gestures. 

In Fig. 7, the head tracker was used to generate a sta- 
bilized dynamic texture map. EyebroW raises were then 
detected using a deformable local texture patch, as de- 
scribed in Sec. 6. The graph shows the estimated values 
for the patch vertical stretch parameter. The peaks corre- 
spond to the three eyebrow raising motions occurring in 
the sequence. Note that these peak values of the deforma- 
tion parameter are significantly larger than the mean "rest 
value." This makes detection easier. A similar method can 
be applied to nonrigid tracking of a closed mouth. 

In our implementation, the workstation's graphic accel- 
eration and texture mapping capabilities were used to ac- 
celerate image warping and rendering; however, the code 
was not optimized in any other way. Tracking speed av- 
erages about one second per frame using the difference 
decomposition, and about seven seconds per frame using 
Powell. These performance figures include the time needed 
to extract images from the compressed input movie and to 
save the stabilized texture map in a movie file. 



Figure 4: Example input video frames and head tracking. The frames reported are 17, 23, 24, 39, 40, and 81 (left to right). Note the 
large amount of motion between two adjacent frames and the occlusions. 
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Figure 5: Example input video frames taken from experiments in estimating head orientation and translation parameters: back-forth 
head gesture (nodding no). Every tenth frame from the sequence is shown. The estimated head orientation and translation are shown in 
the graphs. 
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Figure 6: Second head gesture example: up-down head gesture (nodding yes). Every tenth frame from the sequence is shown. The 
estimated head orientation and translation are shown in the graphs. 



VERTICAL STRETCHING 

Figure 7: Example of nonrigid tracking in the stabilized dynamic 
texture map to detect eyebrow raises. The original sequence and 
tracking deformable texture patch are shown. The graph shows 
resuling estimates of the patch's vertical stretching parameter. 

8   Discussion 
In this paper, we presented a technique for 3D head 

tracking. The dynamic texture image provides a stabi- 
lized view of the face that can be used for facial expression 
recognition, lip reading, and other applications requiring 
that the position of the head is frontal and almost static. We 
demonstrated our approach for rigid head gesture recogni- 
tion and nonrigid facial tracking. The precision and speed 
of the tracker are satisfactory for many practical applica- 
tions. In our experience, the use of the robust error norm in 
tracking makes the system almost insensitive to eye blink- 
ing, and robust to occlusions. 

Probably the major weakness of our system is the lack 
of a backup technique to recover when the track is lost. Us- 
ing the difference decomposition approach, for sequences 
with a reasonable amount of head motion, the performance 
of the tracker gradually decreases after a few hundred 
frames. Using Powell's technique the long-term stability 
of the system increases and faster interframe motion can 

be tracked. The drawback is that in this case the computa- 
tional cost increases by an order of magnitude. In any case, 
a strategy to combat the accumulation error is needed. 

In all tests the initial positioning of the model was done 
by hand. In the future, we plan to use one of the meth- 
ods presented in literature to automate this step [7]. In our 
experience, the initial model positioning is not critical; we 
have run extensive tests to assess the degree of sensitivity 
to the initial 3D positioning of the model and found that 
changes up to about 10% in each parameter respect to the 
"optimal" initial condition affect only slightly the perfor- 
mance and long term stability of the tracker. 
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